¹⁹F, ¹³C single- and two-bond 2D NMR correlations in perfluoroheptanoic acid ## Anthony A. Ribeiro Duke NMR Spectroscopy Center and Department of Radiology, B143 Levine Science Research Center, Box 3711, Duke University Medical Center, Durham, NC 27710, USA Received 9 August 1996; accepted 11 November 1996 #### **Abstract** The first ¹⁹F, ¹³C single- and multi-bond 2D NMR correlations using fluorine detection methods are reported for a perfluorinated alkyl chain. These heteronuclear correlations are observed in perfluoroheptanoic acid and combined with ¹⁹F-decoupled ¹³C data and homonuclear ¹⁹F, ¹⁹F COSY to derive a full set of unequivocal ¹⁹F and ¹³C assignments. © Elsevier Science S.A. Keywords: NMR; 19F NMR; 13C NMR; 19F, 13C NMR correlations; 19F decoupling perfluoroheptanoic acid #### 1. Introduction Perfluorinated alkyl compounds are currently in use as blood substitutes [1], breathing media in lungs and as monitors of oxygen tension in tissues [2,3] and tumors [4]. Despite their wide application, there is currently a paucity of ¹³C data on these compounds, as their ¹³C NMR spectra in the absence of fluorine decoupling are very complex, i.e. the ¹³C resonances are split by multi-bond ¹⁹F-¹³C couplings, and the spectra are further complicated by the fact that the chemical shifts of the fluorinated carbon nuclei are very near to one another. ¹³C NMR spectral simplification through complete ¹⁹F decoupling and two dimensional (2D) ¹⁹F, ¹³C NMR correlation spectroscopy would be ideal and highly attractive approaches to the analyses of these compounds, if certain technical and experimental difficulties can be surmounted. ¹⁹F decoupling is currently not in general use as most NMR spectrometers are not equipped with this capability. ¹⁹F decoupling of fluoroalkyl chains also presents a special challenge with a need to simultaneously excite ¹⁹F resonances over a wide spectral range. Ideally, ¹⁹F decoupling would also be accomplished at low decoupler power levels so that heating of the sample does not occur. Our laboratory [5], Berger [6], and Bourdonneau and Brevard [7] have recently reported the first ¹⁹F, ¹³C 2D NMR correlations for simple fluorinated molecules. Its application to fluoroalkyl chains [8] requires correlation of a large ¹⁹F window against a large ¹³C window. We [5,8] have faced and overcome many of the experimental difficulties and can now routinely implement ¹⁹F decoupling and ¹⁹F, ¹³C correlation strategies in our laboratory. In this paper we report for the first time the complete NMR analysis of a perfluorinated alkyl chain. We have applied homonuclear ¹⁹F, ¹⁹F 2D NMR, ¹⁹F-decoupled ¹³C 1D NMR and heteronuclear ¹⁹F, ¹³C 2D NMR correlation methods to derive a full set of unequivocal ¹⁹F and ¹³C assignments for perfluoroheptanoic acid. #### 2. Experimental details Perfluorinated heptanoic acid $[7,7,7\ 6,6\ 5,5\ 4,4\ 3,3\ 2,2$ trideca-fluoro-1-heptanoic acid; $CF_3-(CF_2)_5$ -COOH] was purchased from Aldrich Chemical Co., Milwaukee, WI and was used without further purification. NMR data were recorded on a 30% v/v sample in DMSO-d₆ in a 5 mm NMR tube at 28 °C using a Varian Unity 500 spectrometer. NMR spectra were obtained using a 5 mm Varian inverse probe with the high band coil tuned for ¹⁹F resonance at 470.38 MHz and the low band coil tuned for ¹³C resonance at 125.72 MHz. The ¹⁹F 90° pulse was 8 μ s. The recording of ¹⁹F 1D NMR spectra between -80 and -135 ppm required the use of a 25 873 kHz spectral window which was highly digitized with 100 032 points. This same, relatively wide, spectral window was used with 4K points for 2D COSY [9,10]. COSY spectra [9,10] were recorded in the absolute value mode. To ensure reasonable digital resolution in the t_1 dimen- sion at the 25.9 kHz ¹⁹F window, 2048 time increments were collected. The data were zero-filled to 4096 points and apodized with sine-bell weighting along both dimensions. Sixteen scans were collected per increment and the relaxation delay was 1 s. The 13 C 90° pulse was 10 μ s. 1D 13 C NMR spectra were recorded between 30 and 170 ppm using a 17.598 kHz spectral window digitized into 128 000 points. The 19 F decoupler was calibrated directly on the 19 F-coupled C7 CF₃ resonance which is a clear quadruplet of triplets with $^{1}J_{CF}$ of \approx 287 Hz centered about 116.9 ppm (Fig. 3). Off-resonance decoupling gave reduced values of $^{1}J_{CF}$ which were used to obtain γ H2/2 Π at various decoupler power values. At <2 W power GARP1 decoupling [11] gave γ H2/2 Π fields of > 32 kHz which sufficed to decouple the CF₃ and CF₂ 19 F regions simultaneously. Single-bond ¹H, ¹³C correlations based on the ¹H-detected HMQC method [12,13] have been used extensively to study hydrocarbon molecules. The HMQC experiment was adapted to record single-bond ¹⁹F, ¹³C heteronuclear chemical shift correlation spectra with ¹⁹F detection and full ¹³C decoupling using GARP1 [11]. Two separate HMOC experiments were carried out. The first correlated a 25.873 kHz ¹⁹F window against a 17.598 kHz ¹³C window to detect cross peaks from CF₃ as well as CF₂ groups. The second correlated a 5.191 kHz ¹⁹F window with a 8.172 kHz ¹³C window optimized over the CF₂ region. The HMQC experiments used a BIRD [14] filter to obtain better suppression of unwanted signals. In each 2D run, two sets of 300 time increments were obtained in phase sensitive mode, processed using Gaussian functions. and zero-filled to a final size of $2K \times 2K$. The relaxation delay was 1.2 s with 32 transients per increment. The HMQC experiment was optimized for an average ¹J_{CF} coupling of \approx 275 Hz which corresponds to a delay of 1.8 ms. The ¹H-detected multiple bond correlation (HMBC) experiment [13,15] was similarly adapted for ¹⁹F, ¹³C correlations. Two separate, fluorine-detected HMBC experiments were carried out at the same spectral widths as the fluorine-detected HMQC experiments. The HMBC spectra were recorded in the phase sensitive mode without ¹³C decoupling during acquisition [13,15]. They are plotted in mixed mode [absolute value in f_2 (¹⁹F) and phase sensitive in f_1 (13C)]. A shifted Gaussian weighting function was used along f_2 and a cosine weighting function was used along f_1 . Two sets of 300 time increments were zero-filled to a final size of $2K \times 2K$. The relaxation delay was 1.2 s, the filter delay corresponded to an average ${}^{1}J_{CF}$ of 275 Hz, and 64 transients were obtained per increment. The HMBC experiments were optimized for an average two-bond ¹⁹F-¹³C coupling of ≈ 33 Hz which corresponds to a delay of ≈ 15 ms. ### 3. Results and discussion The 470 MHz ¹⁹F NMR spectrum of perfluoroheptanoic acid reveals the single perfluoromethyl (CF₃) and five per- Fig. 1. 470 MHz ¹⁹F NMR spectrum of perfluoroheptanoic acid in DMSO- d_6 showing the CF₃ signal at -84.5 ppm and the CF₂ resonances at -121 to -130 ppm. On expansion, the -84.5 ppm CF₃ and the -121.5 ppm CF₂ are seen to be triplets of triplets; the -125.8 and -129.6 ppm CF₂ multiplets show transitions with fine structure but the -125.0 and -126.1 ppm CF₂ resonances are featureless multiplets with unresolvable couplings. fluoromethylene (CF₂) groups to resonate as six distinct 19 F signals between -80 and -130 ppm (Fig. 1). The -84.5 ppm signal is assigned to C7 (CF₃) based on intensity and chemical shift/structural considerations. The expansion reveals the CF₃ signal to be a triplet of triplets with resolved ¹⁹F, ¹⁹F scalar couplings of 10 and 2.4 Hz. These are taken as ${}^4J_{\rm FF}$ and ${}^5J_{\rm FF}$ couplings as linear perfluoro compounds are known to have small ${}^{3}J_{FF}$ vicinal couplings [16], and Battais et al. [17] have performed careful decoupling experiments which located ${}^4J_{\rm FF}$ and ${}^5J_{\rm FF}$ couplings of ≈ 10.7 and ≈ 2.5 Hz at the CF₃ of a perfluorobutyl chain. The assignment of the CF₂ groups is not obvious from the 1D spectrum. The CF₂ group adjacent to the CF₃ of fluoroalkyl chains is usually found at the most upfield CF₂ position [16–20]. On this basis, the -129.6 ppm signal can be assigned to C6 CF₂ group. Because of extensive scalar coupling, particularly from the long range couplings, the CF₂ signals are complex multiplets with many NMR transitions that contribute to varying lineshapes. For example, on expansion, the -121.6 ppm CF₂ resonance is seen as a triplet of triplets with couplings of 12.6 and ≈ 3 Hz. The -125.9 and -129.6 ppm resonances are complicated multiplets with fine structure splittings in the range of 4-15 Hz. The NMR transitions in the -125.1 and -126.1 ppm signals are closely spaced, and these signals appear broad and poorly resolved. The effective linewidths of most of the CF₂ signals are about 45 Hz, while the center line of the CF₃ multiplet has an effective linewidth of about 6 Hz. A very useful feature of COSY is its ability to detect spinspin couplings between nuclei even when the signals are broad and the coupling is not resolved. This arises because the amplitude of cross peaks in COSY is known to depend on the T_2 relaxation of the coupled nuclei, and not on T_2^* which governs the effective linewidth of a resonance [10]. ¹⁹F, ¹⁹F 2D COSY previously has been used to explore couplings in fluorinated alkyl chains [6,21,22]. Fig. 2(A) and (B) show the full and expanded ¹⁹F, ¹⁹F 2D COSY maps for perfluoroheptanoic acid. The CF₃ resonance at -84.5 ppm shows a strong cross peak to the -126.1 ppm CF₂ and a Fig. 2. (A) 470 MHz 2D COSY map showing the $^{19}F_{-}^{19}F$ spin connectivities between CF_3 and CF_2 regions of perfluoroheptanoic acid in DMSO-d₆. (B) Expanded 2D map showing connectivities within the CF_2 region. Note the presence of dominant and weak cross peaks reflecting unusual multiple connectivities from the presence of three-, four-, and five-bond $^{19}F_{-}^{19}F$ couplings. For example, the -125.1 ppm CF_2 group (assigned to C4) shows strong cross peaks to the -121.6 and -129.6 ppm resonances and weaker correlations to the -125.9 CF_2 , the -126.1 ppm CF_2 and the -84.5 ppm CF_3 signals. weak cross peak to the -125.1 ppm CF_2 line. Each CF_2 peak shows multiple off-diagonal connectivities. For example, the - 125.1 ppm CF₃ resonance shows strong cross peaks to the - 121.6 and - 129.6 ppm CF₂ signals and weak cross peaks to the -125.9 and -126.1 ppm signals and the -84.5 ppm CF₃ signal. Since ${}^4J_{\text{FF}}$ is usually larger than ${}^3J_{\text{FF}}$ and ${}^5J_{\text{FF}}$ in heterofluoropolymers [21] and perfluorinated chains [16,17,21,22], the dominant COSY connectivities are properly interpreted as due to n, n+2 couplings, i.e. between next nearest neighbor groups. The dominant COSY connectivity from the CF_3 (C7) assigns the -126.1 ppm CF_2 peak to C5. The COSY map has sufficient digital resolution so that the COSY cross peak from C5 at -126.1 ppm to the neighboring - 125.9 ppm CF₂ signal is clearly resolved, thus assigning C3. Similarly, the dominant COSY connectivity from the -129.6 ppm CF₂ (C6) allows the assignment of the -125.1 ppm CF₃ signal to C4. The subsequent dominant COSY cross peak from C4 then assigns the - 121.6 ppm CF₂ signal to C2. The weak COSY connectivities arise from ${}^{3}J_{FF}$ and ${}^{5}J_{FF}$ couplings. The results provide further evidence that the ¹⁹F-¹⁹F couplings in perfluorinated alkyl chains persist across 3, 4 or 5 bonds [8,21,22]. The ${}^3J_{\rm FF}$, ${}^4J_{\rm FF}$ and ${}^5J_{\rm FF}$ couplings are detected by COSY despite being small relative to the apparent linewidths of the ¹⁹F resonances. To obtain ¹³C data, we first considered the instrumental requirements for ¹⁹F decoupling. One-bond ¹⁹F-¹³C couplings are about two times larger than one bond ¹H-¹³C couplings, and ¹⁹F shifts occur over a wider spectral range than ¹H shifts. The separation between CF₃ and CF₂ resonances on a 500 MHz NMR spectrometer, is some 30 kHz, or about six times larger than the 5 kHz needed to span a 10 ppm ¹H window. Thus, in essence for routine work with perfluorinated alkyl chains, complete ¹⁹F decoupling is about a factor of 12 more difficult to achieve than complete ¹H decoupling. In early work on fluoroalkanes using noise decoupling methods [23-25], two separate ¹³C spectra were recorded, first with the ¹⁹F decoupler set at the CF₃ resonance and then at the midpoint of the CF₂ resonances. Complete wide-band ¹⁹F decoupling which allowed the recording of a single ¹³C spectrum was only achieved by using high power (50 W) decoupler units [23,25]. At 50 W decoupler power, a rapid stream of nitrogen gas was used to cool the decoupling coil [25]. In the present study, we achieve the complete ¹⁹F decoupling of CF₃ and CF₂ resonances using < 2 W of power with the implementation of the GARP1 broadband decoupling scheme [11]. This low power decoupling strategy avoids the sample heating which could arise when using high power decoupling. Fig. 3(A) shows the fully coupled 125 MHz ¹³C NMR spectrum of perfluoroheptanoic acid processed with a 4 Hz Fig. 3. Expansions of 125 MHz 13 C NMR spectra of perfluoroheptanoic acid in DMSO-d₆. (A) Fluorine-coupled spectrum, 2048 scans. The six fluorinated carbon nuclei (C2–C7) give rise to > 47 lines in the 15 ppm window between 121 and 106 ppm. The C1 (carboxyl) resonance appears as a triplet at 159.4 ppm with $^2J_{\rm FC}$ of \approx 27 Hz. (B) 13 C NMR spectrum with 19 F-decoupling of the CF₂ signals, 400 scans. The C2–C5 resonances are decoupled singlets. The quartet at 116.9 ppm with $^{1}J_{\rm FC}$ arises from the C7 CF₃. The quartet at 108.82 ppm with $^{2}J_{\rm FC}$ splitting of 37 Hz is identified as C6. (C) With simultaneous 19 F decoupling of the CF₂ and CF₃ resonances, the fluorinated 13 C resonances simplify to singlets. line broadening. The six fluorinated carbons (C2-C7) give rise to >47 resolved lines in a narrow region between 106 and 121 ppm due to one-, two- and possibly three-bond fluorine-carbon couplings. The CF₃ signal is easily recognized as the 13 C quadruplet of triplets centered at ≈ 116.9 ppm with a one-bond ¹⁹F-¹³C coupling of 287.6 Hz and a two-bond ¹⁹F-¹³C coupling of 33 Hz. The triplet at 159.4 ppm with a two-bond ¹⁹F-¹³C coupling of ≈27 Hz clearly arises from the carboxyl signal. When the spectrum is processed with 0.25 Hz line broadening, these resolved multiplets hint at an upper limit of about 1 Hz for a possible three-bond fluorinecarbon coupling constant. The overlapped multiplets in the 114-106 ppm region arise from the five CF₂ groups. These multiplets yield estimates of about 267 Hz and 27-30 Hz for one- and two-bond ¹⁹F-¹³C couplings in the CF₂ groups. When low power GARP1 fluorine decoupling is applied to simultaneously decouple the CF3 and CF2 resonances, the ¹⁹F-¹³C couplings collapse and the fluorinated carbon signals simplify to singlets (Fig. 3(C)), allowing the location of their chemical shift values. When the decoupler is set to decouple only the CF₂ resonances, the CF₃ quadruplet of triplets centered at ≈ 116.9 ppm (C7) collapses to a simple quartet with a one-bond ¹⁹F-¹³C coupling (Fig. 3(B)). A second ¹³C quartet appears at 108.2 ppm with a two-bond 19 F- 13 C coupling of ≈ 36.8 Hz. This quartet clearly arises from the perfluoromethylene next to the CF₃ group, i.e. the C6 CF₂. The remaining CF₂ resonances and the carboxyl signal are simplified to singlets. ¹⁹F, ¹³C heteronuclear 2D NMR spectroscopy on fluorohydrocarbons is at present essentially unexplored [5-8]. In the ¹H-detected HMQC experiment for single-bond ¹H-¹³C correlations in aliphatic hydrocarbons, the multiple quantum coherence delay is usually set to optimize for an average onebond ${}^{1}H-{}^{13}C$ coupling of ≈ 140 Hz. In perfluoroheptanoic acid, where ${}^{1}J_{CF}$ is ≈ 287 Hz for the CF₃ group and ≈ 266 Hz for the CF₂ groups, we used an average ¹J_{CF} coupling constant of ≈275 Hz for the ¹⁹F-detected HMQC experiment. Fig. 4(A) and (C) respectively show the resultant ¹⁹F, ¹³C single-bond (HMQC) shift correlation maps for perfluoroheptanoic acid obtained at a 25.873 kHz ¹⁹F spectral window to include the CF₃ group and at a 5.194 kHz ¹⁹F window to optimize for the correlations in the CF2 region. The corresponding 1D 19F and 19F-decoupled 13C spectra are plotted on the top and side of the 2D maps. We have implemented 13 C decoupling in the f_1 dimension to collapse the 13 C multiplets to their chemical shift positions. Under these conditions, the HMQC experiment is expected to show single cross peaks between the A spin (¹⁹F) and the X spin (¹³C). Five single, AX-type cross peaks are clearly seen for the CF₂ groups in the wide (Fig. 4(A)) and narrow (Fig. 4(C)) window HMQC maps. Three "apparent" cross peaks are seen for the CF₃ group in the wide window map (Fig. 4(A)). The two outer cross peaks are "sinc wiggle" artifacts from the weighting function used in data processing as a "compromise" choice due to the large variation in the ¹⁹F NMR Fig. 4. (A), (C) $^{19}\text{F-detected}~2D\,^{19}\text{F-}^{13}\text{C}$ single bond correlation (HMQC) maps of perfluoroheptanoic acid in DMSO-d₆; (B), (D) $^{19}\text{F-detected}~2D\,^{19}\text{F-}^{13}\text{C}$ multibond correlation (HMBC) maps of perfluoroheptanoic acid optimized for $^2J_{\text{FC}}$ couplings of ≈ 33 Hz. The responses from the CF₃ at 116.9 ppm show ''sinc wiggles'' due to the weighting function in the data processing. lineshapes. Only the central cross peak is the "true" AX correlation for the CF_3 group. The HMQC cross peaks connect the fluorine atoms of the single CF₃ and five CF₂ groups to their respective carbons. With COSY data available, the HMQC results could be directly interpreted to yield the ¹³C assignments. However, we choose to first independently consider the heteronuclear evidence. The 116.9 and 108.2 ppm ¹³C resonances were unequivocally identified as C7 and C6 by fluorine decoupling (above). The direct correlations from these ¹³C signals to the –84.5 ppm and –129.6 ppm ¹⁹F resonances further validates their assignment to the C7 CF₃ and C6 CF₂ groups obtained by COSY. This leaves the four central CF₂ groups (C2–C5) to be considered. Fig. 4(B) and (D) show the corresponding multi-bond (HMBC) ¹⁹F, ¹³C shift correlation maps for perfluoroheptanoic acid. Similar to HMOC, these are the results of two separate experiments—one at a 25.873 kHz ¹⁹F window to include multi-bond correlations from the CF3 group and one at a 5.174 kHz ¹⁹F window to optimize for the multi-bond correlations in the CF₂ region. In the ¹H-detected HMBC experiment, the long range multiple quantum coherence is typically tuned for delays ranging from 50 to 90 ms, corresponding to two- and three-bond ¹H, ¹³C couplings of 10-6 Hz [13,15]. Unlike the case for hydrocarbon molecules where the ${}^{2}J_{HC}$ and ${}^{3}J_{HC}$ couplings are in the same range, $^{2}J_{FC}$ is usually larger than $^{3}J_{FC}$ in fluorinated molecules. Indeed, the fluorine-coupled carbon spectrum of perfluoroheptanoic acid (Fig. 3(A)) suggests an upper limit of 1 Hz for ${}^3J_{\rm FC}$, while ${}^2J_{\rm FC}$ is an order of magnitude larger and in the vicinity of ≈ 30 Hz. This implies that the long range multiple quantum coherence in fluorinated alkyl chains can be simply optimized for two-bond ¹⁹F, ¹³C couplings ranging from 27 to 36 Hz, corresponding to delays of 18.5–13.9 ms. Experimentally, we found a 15 ms delay time in HMBC to be very Table 1 ¹⁹F and ¹³C NMR assignments of CF₃(CF₂)₅COOH ^a | | ¹⁹ F (ppm) ^b | ¹³ C (ppm) ^c | |-----------------------|------------------------------------|------------------------------------| | C1 (COOH) | | 159.410 | | C2 (CF ₂) | - 121.553 | 108.164 | | C3 (CF ₂) | - 125.902 | 110.513 | | C4 (CF ₂) | - 125.068 | 110.690 | | C5 (CF ₂) | - 126.126 | 110.052 | | C6 (CF ₂) | - 129.561 | 108.234 | | C7 (CF ₃) | - 84.531 | 116.910 | a Data at 28 °C. effective for the observation of two-bond ¹⁹F, ¹³C correlations in perfluoroheptanoic acid. For example, in the wide window HMBC (Fig. 4(B)), the C7 CF₃ signal at -84.5 ppm elicits a strong ${}^{2}J_{FC}$ response at 108.2 ppm (C6) with an additional ¹⁹F-coupled direct response at 116.9 ppm (C7). The -121.6 ppm CF₂ resonance evokes a strong ${}^{2}J_{FC}$ correlation at the 159.4 ppm carboxyl resonance, and can thus be assigned to the C2 CF₂ group, in agreement with the COSY data. It also elicits a strong ${}^{2}J_{FC}$ connectivity to the 110.5 ppm signal, which can now be assigned to C3. In the narrow window HMBC (Fig. 4(D)), the C6 CF_2 (-129.6 ppm) shows two strong two-bond cross peaks. The first is the ${}^2J_{\rm FC}$ correlation to C7 at 116.9 ppm, which again appears as three "apparent" cross peaks due to "sinc wiggle" artifacts. Again, only the central cross peak is the "true" two-bond correlation from the C6 CF₂ to the C7 CF₃. The second ${}^{2}J_{FC}$ correlation from the C6 CF₂ is to the 110.1 ppm CF₂ carbon signal, which is now assigned as C5. These six separate twobond responses suffice for a full assignment from the heteronuclear data. Only the ¹³C signal at 110.7 ppm and the ¹⁹F signal at -125.1 ppm remain to be assigned to the C4 CF₂. Further expansions and analysis of the remaining multi-bond responses from the C4, C3 and C5 CF₂ signals in the narrow window HMBC showed that we observed a full complement of two-bond correlations in perfluoroheptanoic acid. The remaining data served as a check for consistency of the ¹⁹F and ¹³C NMR assignments summarized in Table 1. The ¹⁹F assignments derived from the ¹⁹F-decoupled ¹³C spectra and the ¹⁹F, ¹³C correlation strategies agree completely with the results from the COSY. Our ¹⁹F NMR assignments for the C2–C5 CF₂ groups of perfluoroheptanoic acid in Table 1 differ from those reported by Battais et al. [26]. The most disturbing contrast is their assignment of the –121.5 ppm signal to an interior CF₂ group (C5) instead of the CF₂ group adjacent to the carboxylic acid, i.e. C2. We believe their CF₂ assignments for perfluoroheptanoic acid to be in error as they reported their findings from a one-dimensional ¹⁹F NMR spectrum of a complex mixture of perfluorinated acids (ranging from two to seven carbon chains) obtained by the potassium permanganate oxidation of a mixture of perfluoroolefins. Our observations from the COSY connectivities and the two-bond HMBC correlation to the carboxyl resonance give clear evidence that the -121.5 ppm signal arises from the C2 CF₂ group. This agrees with recent 2D COSY data for perfluorooctanoic acid [24,25]. The literature assignments have been used by the French group [26–28] to derive paramagnetic ¹⁹F shift increments for the carboxylic acid group and to develop models for the a priori calculation of the ¹⁹F chemical shifts of linear fluoroalkyl carboxylic acids. The quality of the calculational models ultimately depends on correct experimental assignments and shifts. #### 4. Conclusion In this paper we have combined efficient fluorine decoupling with the successful implementation of ¹⁹F-detected HMQC and HMBC NMR experiments to obtain single- and two-bond ¹⁹F, ¹³C 2D NMR correlations in perfluoroheptanoic acid. This represents a new approach with potential for a fuller structural characterization of the carbon backbones of fluorocarbon molecules. A complete set of unequivocal ¹⁹F and ¹³C NMR assignments for perfluoroheptanoic acid has been derived. #### Acknowledgements The Duke NMR Center is supported in part by NIH NCI P30-CA-14326. NMR instrumentation in the Duke NMR Center was funded by the NSF, the NIH, the NC Biotechnology Center and Duke University. #### References - [1] P. Parhami, B.M. Fung, J. Phys. Chem. 87 (1983) 1928. - [2] R.P. Mason, F.M.H. Jeffrey, C.R. Malloy, E.E. Babcock, P.P. Antich, Magn. Reson. Med. 27 (1992) 310. - [3] B. Berkowitz, C.A. Wilson, D.L. Hatchell, R.E. London, Magn. Reson. Med. 21 (1991) 233. - [4] P.S. Hees, C.H. Sotak, Magn. Reson. Med. 29 (1993) 303. - [5] A.A. Ribeiro, M.J. Glen, J. Magn. Reson. Ser. A 107 (1994) 158. - [6] S. Berger, J. Fluorine Chem. 72 (1995) 117. - [7] M. Bourdonneau, C. Brevard, Inorg. Chem. 29 (1990) 3270. - [8] A.A. Ribeiro, Magn. Reson. Chem, in press. - [9] A. Bax, R. Freeman, G.A. Morris, J. Magn. Reson. 42 (1981) 164. - [10] A. Bax, R. Freeman, J. Magn. Reson. 44 (1981) 542. - [11] A.J. Shaka, P.S. Barker, R. Freeman, J. Magn. Reson. 64 (1985) 547. - [12] A. Bax, S. Subramanian, J. Magn. Reson. 67 (1986) 565. - [13] M.F. Summers, L.G. Marzilli, A. Bax, J. Am. Chem. Soc. 108 (1986) 4285. - [14] J.R. Garbow, D.P. Weitekamp, A. Pines, Chem. Phys. Lett. 93 (1982) 504 - [15] A. Bax, M.F. Summers, J. Am. Chem. Soc. 108 (1986) 2093. - [16] J.W. Emsley, J. Feeney, L.J. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, vol. 2, Pergamon, New York, 1966, pp. 877-878. $^{^{\}rm b}$ ¹⁹F chemical shifts expressed relative to CFCl₃ scale by setting a 3% trifluoroacetic acid in D₂O solution to -76.0 ppm. The negative values indicate resonances towards higher field. $^{^{\}rm c}$ ¹³C chemical shifts expressed on TMS scale by setting DMSO-d₆ to 39.5 ppm. - [17] A. Battais, B. Boutevin, P. Moreau, J. Fluorine Chem. 12 (1978) 481. - [18] F.A. Bovey, Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York, 1969, pp. 211-214. - [19] A. Battais, G. Bauduin, B. Boutevin, Y. Pietrasanta, J. Fluorine Chem. 31 (1986) 197. - [20] F.J. Weigert, K.J. Karel, J. Fluorine Chem. 37 (1987) 125. - [21] D.W. Ovenall, R.C. Ferguson, in: W.S. Brey (Ed.), Pulse Methods in 1D and 2D Liquid Phase NMR, Academic Press, San Diego, CA, 1987, pp. 489-507. - [22] S. Yonemori, H. Sasakura, J. Fluorine Chem. 75 (1995) 151. - [23] M.A. Hamza, G. Serratrice, M.Stebe, J.J. Delpuech, J. Magn. Reson. 42 (1981) 227. - [24] J.R. Lyerla, Jr., D.L. VanderHart, J. Am. Chem. Soc. 98 (1976) 1697. - [25] D.W. Ovenall, J.J. Chang, J. Magn. Reson. 25 (1977) 361. - [26] A. Battais, G. Bauduin, B. Boutevin, Y. Pietrasanta, J. Fluorine Chem. 31 (1981) 197. - [27] G. Bauduin, Y. Pietrasanta, M. Belbachir, A. Benzaza, J. Fluorine Chem. 52 (1991) 277. - [28] G. Bauduin, B. Boutevin, Y. Pietrasanta, J. Fluorine Chem. 71 (1995)